
1.1.0 Change Log

Primary Changes

1. Added a new component called SAMInitializer (now added with Default SAM Setup

command, or add manually via Add Component -> Deep Space Labs -> SAM -> Primary

Components), which handles initializing SAM either in “immediate” mode or gradually.

You can hook the Initializer up to a button or call it from another script. It also has

support for activating and/or deactivating game objects automatically before and/or

after the initialization starts/ends.

You can hook up a SAMText and/or a SAMSlider (also new components) to the

SAMInitializer to have the Initialization Progress shown to the player as well. They are

abstractions that allow the SAMInitializer’s progress updating to be used with 3rd party

UI assets or your own custom solutions.

Default SAMText components supporting UnityEngine.UI.Text, TextMeshPro, and

TextMeshProUGUI components have also been added, as well as one default SAMSlider

component supporting UnityEngine.UI.Slider (all can be added via Add Component ->

Deep Space Labs -> SAM -> Secondary Components; just add to the same game object as

the component each one supports).

2. When using the “Default SAM Setup” command to add default game objects for SAM to

the scene, the Origin Change Strategy is now set to Shift World by default. We also now

create a default Standard Hierarchy Organizer, a default Standard Hierarchy World

Shifter, and a Frame Rate Dependent Execution Controller on the “Default Components”

game object, which are automatically assigned to the World. Finally, the SAMInitializer

is added under a new game object of the same name.

3. Improved the performance of the Scene Chunk Streamer’s mechanism for unloading

Asset Chunks (it now works close to how the Prefab Chunk Streamer works). The

method can take longer to complete but should help avoid bottlenecks.

4. Added a LOD Filter to the WorldGroupingListener class, which effectively allows you to

stop any World Grouping’s that derive from this class from being used with batches of

World Cells associated with one or more specific LOD Groups.

5. Moved transitionTime, makeVisibleCurve and makeInvisibleCurve fields from respective

Transitioner classes to base CellVisualTransitionerClass, as these properties were used in

almost all Transitioners and should be useful when creating your own custom

Transitioners (all can be accessed with capitalized versions of the names, e.g.

TransitionTime).

6. Added two new Cell Visual Transition Controllers, the PositionTransitioner and the

ScaleTransitioner. The former manipulates the Position value of transforms to perform

transitions, while the latter manipulates the Scale value.

7. Made several changes to the World Designer Tool that should increase advanced

operation speeds, especially when using Build Setting based scene assets.

8. Added a Scene Conversion Tutorial Chapter to the In-Editor Guide.

Fixes

1. Fixed an issue that caused a dark GUI window intended for the Dark Editor Theme to be

used with the Light Editor Theme.

2. Fixed a few bugs that caused inconsistencies in the way some World Grouping Listener

methods were called.

3. Modified StaticBatcherListener to not continuously generate garbage when its

enumerator based methods are executed.

4. Fixed a timing bug with the “Duplicate World” Origin Cell Change Strategy that resulted

in the Player being moved after the removal of the pre-duplicated Asset Chunks rather

than before.

5. Fixed/changed some text/settings in editor windows/inspectors.

6. Fixed store links in Editor Guide.

7. Fixed some documentation/XML issues. This is mostly beneficial to for the Website API

however is also useful for IDE scripting.

8. Fixed a potential issue with the Burst Compiler and BurstEnabledJobImplementation.

9. Fixed some errors related to using Temp allocated NativeArrays inside single frame jobs.

10. Fixed a bug causing some improper Naming Convention Format Strings to not be

detected (Core.dll change).

11. Fixed a bug that could cause a NullReferenceException when using the Editor Guide

(EditorCore.dll change).

Other

1. Made an attempt at fixing Native Array errors from showing when using the Loading

Blueprint Editor and World Designer Tool. It is likely further fixes will be needed to

address this completely. Please message us if you see errors related to Native Arrays not

being properly disposed!

2. Improved several Chapters/Sections in the Editor Guide to be clearer.

3. When using the World Designer Tool, non-loaded enabled cells will now show the

number of chunks used by LOD Group 1.

4. Naming Convention Format strings can no longer have a ‘/’ character in their name, as

this will mess up some World Designer Tool operations (Core.dll change).

5. Added a Change Logs Chapter to the In-Editor Guide, with links to all change logs

(hosted on deepspacelabs.net).

